R中的lapply和do.call有什么区别?

最近我在学习R,两个函数lapplydo.call混淆了。 看起来,它们和Lisp中的map函数类似。 但是为什么有两个不同的名字呢? 为什么R不使用称为map的函数?

有一个称为Map的function,可能与其他语言的地图类似:

  • lapply返回与X相同长度的列表,其中每个元素都是将FUN应用于X的对应元素的结果。

  • do.call构造并执行一个函数调用,从一个名字或一个函数和一个参数列表传递给它。

  • Map将一个函数应用到给定vector的相应元素… Map是一个简单的mapply包装,它不会试图简化结果,类似于Common Lisp的mapcar(但是参数被回收)。 未来的版本可能允许对结果types进行一些控制。


  1. Mapmapply的包装
  2. lapplymapply
  3. 因此在许多情况下Maplapply将是相似的。

例如,这里是lapply

 lapply(iris, class) $Sepal.Length [1] "numeric" $Sepal.Width [1] "numeric" $Petal.Length [1] "numeric" $Petal.Width [1] "numeric" $Species [1] "factor" 

和使用Map

 Map(class, iris) $Sepal.Length [1] "numeric" $Sepal.Width [1] "numeric" $Petal.Length [1] "numeric" $Petal.Width [1] "numeric" $Species [1] "factor" 

do.call采用一个函数作为input,并将其他参数泼到函数上。 例如,它被广泛用于将列表组装成更简单的结构(通常使用rbindcbind )。

例如:

 x <- lapply(iris, class) do.call(c, x) Sepal.Length Sepal.Width Petal.Length Petal.Width Species "numeric" "numeric" "numeric" "numeric" "factor" 

lapply在列表上应用一个函数, do.call用参数列表调用一个函数。 这对我来说看起来很不一样

用列表举个例子:

 X <- list(1:3,4:6,7:9) 

用lapply你可以得到列表中每个元素的意思:

 > lapply(X,mean) [[1]] [1] 2 [[2]] [1] 5 [[3]] [1] 8 

do.call给出一个错误,正如意味着参数“trim”为1。

另一方面, rbind绑定所有参数。 所以绑定X行,你做:

 > do.call(rbind,X) [,1] [,2] [,3] [1,] 1 2 3 [2,] 4 5 6 [3,] 7 8 9 

如果你使用lapply ,R会将rbind应用于列表中的每一个元素,给你这个废话:

 > lapply(X,rbind) [[1]] [,1] [,2] [,3] [1,] 1 2 3 [[2]] [,1] [,2] [,3] [1,] 4 5 6 [[3]] [,1] [,2] [,3] [1,] 7 8 9 

要有像Map这样的东西,你需要?mapply ,这是完全不同的东西。 为了得到例如X中每个元素的平均值,但是使用不同的修整,可以使用:

 > mapply(mean,X,trim=c(0,0.5,0.1)) [1] 2 5 8 

lapplymap类似, do.call不是。 lapply将函数应用于列表的所有元素, do.call调用一个函数,其中所有的函数参数都在列表中。 所以对于一个n元素列表, lapplyn函数调用, do.call只有一个函数调用。 所以do.calllapply完全不同。 希望这个澄清你的问题。

一个代码示例:

 do.call(sum, list(c(1,2,4,1,2), na.rm = TRUE)) 

和:

 lapply(c(1,2,4,1,2), function(x) x + 1) 

用最简单的话来说:

  1. lapply()为列表中的每个元素应用一个给定的函数,所以会有几个函数调用。

  2. do.call()将给定的函数作为一个整体应用于列表,所以只有一个函数调用。

最好的学习方法是在R文档中使用函数示例。

lapply()是一个类似地图的函数。 do.call()是不同的。 它用于将parameter passing给列表forms的函数,而不是枚举它们。 例如,

 > do.call("+",list(4,5)) [1] 9 

虽然有很多答案,这里是我的例子供参考。 假设我们有一个数据列表:

 L=list(c(1,2,3), c(4,5,6)) 

函数lapply返回一个列表。

 lapply(L, sum) 

上面的意思就像下面这样。

 list( sum( L[[1]]) , sum( L[[2]])) 

现在让我们为do.call做同样的事情

 do.call(sum, L) 

它的意思是

 sum( L[[1]], L[[2]]) 

在我们的例子中,它返回21.总之,lapply总是返回一个列表,而do.call的返回types实际上取决于执行的函数。

两者的区别是:

 lapply(1:n,function,parameters) 

=>这个发送1,参数到function=>这个发送2,参数到function等等

 do.call 

只需发送1 … n作为一个向量和参数来运行

所以在应用你有n个函数调用,在do.call中你只有一个

我觉得在这方面一个重要的方面没有得到certificate(或对我来说不明显)。 也就是说,您可以使用do.calllist中的命名parameter passing给函数。

例如, runif需要参数nminmax 。 可以使用do.call来传递这些信息,如下所示。

 para <- list(n = 10, min = -1, max = 1) do.call(runif, para) #[1] -0.4689827 -0.2557522 0.1457067 0.8164156 -0.5966361 0.7967794 #[7] 0.8893505 0.3215956 0.2582281 -0.8764275