在字典中获得最大价值的关键?

我有一个dictionary :键是string,值是整数。

例:

 stats = {'a':1000, 'b':3000, 'c': 100} 

我想把'b'作为答案,因为它是价值更高的关键。

我做了以下操作,使用具有反转键值元组的中间列表:

 inverse = [(value, key) for key, value in stats.items()] print max(inverse)[1] 

这是一个更好的(或更优雅)的方法?

你可以使用operator.itemgetter

 import operator stats = {'a':1000, 'b':3000, 'c': 100} max(stats.iteritems(), key=operator.itemgetter(1))[0] 

而不是在内存中build立一个新的列表使用stats.iteritems()max()函数的key参数是计算用于确定如何对项目进行排名的关键字的函数。

请注意,如果您有另一个键值对“d”:3000,该方法将只返回其中一个 ,即使它们都具有最大值。

 >>> import operator >>> stats = {'a':1000, 'b':3000, 'c': 100, 'd':3000} >>> max(stats.iteritems(), key=operator.itemgetter(1))[0] 'b' 
 max(stats, key=stats.get) 

我已经testing了许多变体,并且这是以最大值返回字典密钥的最快方法:

 def keywithmaxval(d): """ a) create a list of the dict's keys and values; b) return the key with the max value""" v=list(d.values()) k=list(d.keys()) return k[v.index(max(v))] 

给你一个想法,这里有一些候选方法:

 def f1(): v=list(d1.values()) k=list(d1.keys()) return k[v.index(max(v))] def f2(): d3={v:k for k,v in d1.items()} return d3[max(d3)] def f3(): return list(filter(lambda t: t[1]==max(d1.values()), d1.items()))[0][0] def f3b(): # same as f3 but remove the call to max from the lambda m=max(d1.values()) return list(filter(lambda t: t[1]==m, d1.items()))[0][0] def f4(): return [k for k,v in d1.items() if v==max(d1.values())][0] def f4b(): # same as f4 but remove the max from the comprehension m=max(d1.values()) return [k for k,v in d1.items() if v==m][0] def f5(): return max(d1.items(), key=operator.itemgetter(1))[0] def f6(): return max(d1,key=d1.get) def f7(): """ a) create a list of the dict's keys and values; b) return the key with the max value""" v=list(d1.values()) return list(d1.keys())[v.index(max(v))] def f8(): return max(d1, key=lambda k: d1[k]) tl=[f1,f2, f3b, f4b, f5, f6, f7, f8, f4,f3] cmpthese.cmpthese(tl,c=100) 

testing字典:

 d1={1: 1, 2: 2, 3: 8, 4: 3, 5: 6, 6: 9, 7: 17, 8: 4, 9: 20, 10: 7, 11: 15, 12: 10, 13: 10, 14: 18, 15: 18, 16: 5, 17: 13, 18: 21, 19: 21, 20: 8, 21: 8, 22: 16, 23: 16, 24: 11, 25: 24, 26: 11, 27: 112, 28: 19, 29: 19, 30: 19, 3077: 36, 32: 6, 33: 27, 34: 14, 35: 14, 36: 22, 4102: 39, 38: 22, 39: 35, 40: 9, 41: 110, 42: 9, 43: 30, 44: 17, 45: 17, 46: 17, 47: 105, 48: 12, 49: 25, 50: 25, 51: 25, 52: 12, 53: 12, 54: 113, 1079: 50, 56: 20, 57: 33, 58: 20, 59: 33, 60: 20, 61: 20, 62: 108, 63: 108, 64: 7, 65: 28, 66: 28, 67: 28, 68: 15, 69: 15, 70: 15, 71: 103, 72: 23, 73: 116, 74: 23, 75: 15, 76: 23, 77: 23, 78: 36, 79: 36, 80: 10, 81: 23, 82: 111, 83: 111, 84: 10, 85: 10, 86: 31, 87: 31, 88: 18, 89: 31, 90: 18, 91: 93, 92: 18, 93: 18, 94: 106, 95: 106, 96: 13, 9232: 35, 98: 26, 99: 26, 100: 26, 101: 26, 103: 88, 104: 13, 106: 13, 107: 101, 1132: 63, 2158: 51, 112: 21, 113: 13, 116: 21, 118: 34, 119: 34, 7288: 45, 121: 96, 122: 21, 124: 109, 125: 109, 128: 8, 1154: 32, 131: 29, 134: 29, 136: 16, 137: 91, 140: 16, 142: 104, 143: 104, 146: 117, 148: 24, 149: 24, 152: 24, 154: 24, 155: 86, 160: 11, 161: 99, 1186: 76, 3238: 49, 167: 68, 170: 11, 172: 32, 175: 81, 178: 32, 179: 32, 182: 94, 184: 19, 31: 107, 188: 107, 190: 107, 196: 27, 197: 27, 202: 27, 206: 89, 208: 14, 214: 102, 215: 102, 220: 115, 37: 22, 224: 22, 226: 14, 232: 22, 233: 84, 238: 35, 242: 97, 244: 22, 250: 110, 251: 66, 1276: 58, 256: 9, 2308: 33, 262: 30, 263: 79, 268: 30, 269: 30, 274: 92, 1300: 27, 280: 17, 283: 61, 286: 105, 292: 118, 296: 25, 298: 25, 304: 25, 310: 87, 1336: 71, 319: 56, 322: 100, 323: 100, 325: 25, 55: 113, 334: 69, 340: 12, 1367: 40, 350: 82, 358: 33, 364: 95, 376: 108, 377: 64, 2429: 46, 394: 28, 395: 77, 404: 28, 412: 90, 1438: 53, 425: 59, 430: 103, 1456: 97, 433: 28, 445: 72, 448: 23, 466: 85, 479: 54, 484: 98, 485: 98, 488: 23, 6154: 37, 502: 67, 4616: 34, 526: 80, 538: 31, 566: 62, 3644: 44, 577: 31, 97: 119, 592: 26, 593: 75, 1619: 48, 638: 57, 646: 101, 650: 26, 110: 114, 668: 70, 2734: 41, 700: 83, 1732: 30, 719: 52, 728: 96, 754: 65, 1780: 74, 4858: 47, 130: 29, 790: 78, 1822: 43, 2051: 38, 808: 29, 850: 60, 866: 29, 890: 73, 911: 42, 958: 55, 970: 99, 976: 24, 166: 112} 

Python 3.2下的testing结果如下:

  rate/sec f4 f3 f3b f8 f5 f2 f4b f6 f7 f1 f4 454 -- -2.5% -96.9% -97.5% -98.6% -98.6% -98.7% -98.7% -98.9% -99.0% f3 466 2.6% -- -96.8% -97.4% -98.6% -98.6% -98.6% -98.7% -98.9% -99.0% f3b 14,715 3138.9% 3057.4% -- -18.6% -55.5% -56.0% -56.4% -58.3% -63.8% -68.4% f8 18,070 3877.3% 3777.3% 22.8% -- -45.4% -45.9% -46.5% -48.8% -55.5% -61.2% f5 33,091 7183.7% 7000.5% 124.9% 83.1% -- -1.0% -2.0% -6.3% -18.6% -29.0% f2 33,423 7256.8% 7071.8% 127.1% 85.0% 1.0% -- -1.0% -5.3% -17.7% -28.3% f4b 33,762 7331.4% 7144.6% 129.4% 86.8% 2.0% 1.0% -- -4.4% -16.9% -27.5% f6 35,300 7669.8% 7474.4% 139.9% 95.4% 6.7% 5.6% 4.6% -- -13.1% -24.2% f7 40,631 8843.2% 8618.3% 176.1% 124.9% 22.8% 21.6% 20.3% 15.1% -- -12.8% f1 46,598 10156.7% 9898.8% 216.7% 157.9% 40.8% 39.4% 38.0% 32.0% 14.7% -- 

在Python 2.7下:

  rate/sec f3 f4 f8 f3b f6 f5 f2 f4b f7 f1 f3 384 -- -2.6% -97.1% -97.2% -97.9% -97.9% -98.0% -98.2% -98.5% -99.2% f4 394 2.6% -- -97.0% -97.2% -97.8% -97.9% -98.0% -98.1% -98.5% -99.1% f8 13,079 3303.3% 3216.1% -- -5.6% -28.6% -29.9% -32.8% -38.3% -49.7% -71.2% f3b 13,852 3504.5% 3412.1% 5.9% -- -24.4% -25.8% -28.9% -34.6% -46.7% -69.5% f6 18,325 4668.4% 4546.2% 40.1% 32.3% -- -1.8% -5.9% -13.5% -29.5% -59.6% f5 18,664 4756.5% 4632.0% 42.7% 34.7% 1.8% -- -4.1% -11.9% -28.2% -58.8% f2 19,470 4966.4% 4836.5% 48.9% 40.6% 6.2% 4.3% -- -8.1% -25.1% -57.1% f4b 21,187 5413.0% 5271.7% 62.0% 52.9% 15.6% 13.5% 8.8% -- -18.5% -53.3% f7 26,002 6665.8% 6492.4% 98.8% 87.7% 41.9% 39.3% 33.5% 22.7% -- -42.7% f1 45,354 11701.5% 11399.0% 246.8% 227.4% 147.5% 143.0% 132.9% 114.1% 74.4% -- 

你可以看到f1在Python 3.2和2.7下是最快的(或者更完全的,在这篇文章的顶部是keywithmaxval

这是另一个:

 stats = {'a':1000, 'b':3000, 'c': 100} max(stats.iterkeys(), key=lambda k: stats[k]) 

functionkey只是返回应该用于sorting的值,而max()返回所需的元素。

如果你只需要知道最大值的关键字,就可以不用iterkeysiteritems因为通过Python中的字典进行迭代是通过它的关键字迭代的。

 max_key = max(stats, key=lambda k: stats[k]) 

编辑:

来自评论,@ user1274878:

我是python的新手。 你能解释一下你的答案吗?

是的…

最大

最大(可迭代[,键])

max(arg1,arg2,* args [,key])

返回可迭代中最大的项目或两个或更多个参数中最大的项目。

可选的key参数描述了如何比较元素,以获得最大的优点:

 lambda <item>: return <a result of operation with item> 

返回的值将被比较。

快译通

Python字典是一个哈希表。 字典的关键是声明为键的对象的散列。 由于性能的原因迭代,虽然一个字典实现为迭代通过它的关键。

所以我们可以用它来摆脱获取密钥列表的操作。

closures

在另一个函数中定义的函数被称为嵌套函数。 嵌套函数可以访问封闭范围的variables。

通过lambda函数的__closure__属性可用的statsvariables作为指向父范围中定义的variables的值的指针。

 key, value = max(stats.iteritems(), key=lambda x:x[1]) 

如果你不在乎价值(我会感到惊讶,但是)你可以这样做:

 key, _ = max(stats.iteritems(), key=lambda x:x[1]) 

我喜欢在expression式结尾处解开元组,而不是[0]下标。 我从来不喜欢lambdaexpression式的可读性,但是比operator.itemgetter(1)find这个更好。

鉴于不止一个条目我有最大的价值。 我将列出最大值作为其值的键。

 >>> stats = {'a':1000, 'b':3000, 'c': 100, 'd':3000} >>> [key for key,val in stats.iteritems() if val == max(stats.values())] ['b', 'd'] 

这将给你'B'和任何其他最大的关键。

通过所选答案中的评论迭代解决scheme…

在Python 3中:

 max(stats.keys(), key=(lambda k: stats[k])) 

在Python 2中:

 max(stats.iterkeys(), key=(lambda k: stats[k])) 

随着collections.Counter你可以做

 >>> import collections >>> stats = {'a':1000, 'b':3000, 'c': 100} >>> stats = collections.Counter(stats) >>> stats.most_common(1) [('b', 3000)] 

如果合适的话,你可以简单地从一个空的collections.Counter开始,并添加到它

 >>> stats = collections.Counter() >>> stats['a'] += 1 : etc. 

谢谢,非常优雅,我不记得,最大允许一个“关键”参数。

顺便说一句,要得到正确答案('b'),必须是:

 import operator stats = {'a':1000, 'b':3000, 'c': 100} max(stats.iteritems(), key=operator.itemgetter(1))[0] 
 Counter = 0 for word in stats.keys(): if stats[word]> counter: Counter = stats [word] print Counter 

+1给@Aric Coady最简单的解决scheme。
另外一种方法是在字典中随机select一个最大值的键:

 stats = {'a':1000, 'b':3000, 'c': 100, 'd':3000} import random maxV = max(stats.values()) choice = random.choice([key for key, value in stats.items() if value == maxV) 

我testing了接受的答案AND @狼的最快的解决scheme对一个非常基本的循环和循环比两者都快:

 import time import operator d = {"a"+str(i): i for i in range(1000000)} def t1(dct): mx = float("-inf") key = None for k,v in dct.items(): if v > mx: mx = v key = k return key def t2(dct): v=list(dct.values()) k=list(dct.keys()) return k[v.index(max(v))] def t3(dct): return max(dct.items(),key=operator.itemgetter(1))[0] start = time.time() for i in range(25): m = t1(d) end = time.time() print ("Iterating: "+str(end-start)) start = time.time() for i in range(25): m = t2(d) end = time.time() print ("List creating: "+str(end-start)) start = time.time() for i in range(25): m = t3(d) end = time.time() print ("Accepted answer: "+str(end-start)) 

结果:

 Iterating: 3.8201940059661865 List creating: 6.928712844848633 Accepted answer: 5.464320182800293 

怎么样:

  max(zip(stats.keys(), stats.values()), key=lambda t : t[1])[0]