只读取有限的列数
任何人都可以告诉我如何阅读下面的数据,每年只有前6个月(7列),例如通过使用read.table()
?
Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2009 -41 -27 -25 -31 -31 -39 -25 -15 -30 -27 -21 -25 2010 -41 -27 -25 -31 -31 -39 -25 -15 -30 -27 -21 -25 2011 -21 -27 -2 -6 -10 -32 -13 -12 -27 -30 -38 -29
假设数据在文件data.txt
,可以使用read.table()
的colClasses
参数来跳过列。 这里前7列的数据是"integer"
,我们将其余6列设置为"NULL"
表示应该跳过
> read.table("data.txt", colClasses = c(rep("integer", 7), rep("NULL", 6)), + header = TRUE) Year Jan Feb Mar Apr May Jun 1 2009 -41 -27 -25 -31 -31 -39 2 2010 -41 -27 -25 -31 -31 -39 3 2011 -21 -27 -2 -6 -10 -32
根据数据的实际类型,将"integer"
更改为接受的类型之一,详见?read.table
。
data.txt
看起来像这样:
$ cat data.txt "Year" "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec" 2009 -41 -27 -25 -31 -31 -39 -25 -15 -30 -27 -21 -25 2010 -41 -27 -25 -31 -31 -39 -25 -15 -30 -27 -21 -25 2011 -21 -27 -2 -6 -10 -32 -13 -12 -27 -30 -38 -29
并通过使用创建
write.table(dat, file = "data.txt", row.names = FALSE)
哪里是dat
dat <- structure(list(Year = 2009:2011, Jan = c(-41L, -41L, -21L), Feb = c(-27L, -27L, -27L), Mar = c(-25L, -25L, -2L), Apr = c(-31L, -31L, -6L ), May = c(-31L, -31L, -10L), Jun = c(-39L, -39L, -32L), Jul = c(-25L, -25L, -13L), Aug = c(-15L, -15L, -12L), Sep = c(-30L, -30L, -27L ), Oct = c(-27L, -27L, -30L), Nov = c(-21L, -21L, -38L), Dec = c(-25L, -25L, -29L)), .Names = c("Year", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"), class = "data.frame", row.names = c(NA, -3L))
如果事先不知道列的数量,效用函数count.fields
将读取文件并计算每行中的字段数。
## returns a vector equal to the number of lines in the file count.fields("data.txt", sep = "\t") ## returns the maximum to set colClasses max(count.fields("data.txt", sep = "\t"))
要从数据集中读取一组特定的列,还有其他几个选项:
1)从data.table
fread
:
您可以使用来自data.table
包的fread
的select
参数指定所需的列。 您可以使用列名称或列号的矢量指定列。
对于示例数据集:
library(data.table) dat <- fread("data.txt", select = c("Year","Jan","Feb","Mar","Apr","May","Jun")) dat <- fread("data.txt", select = c(1:7))
或者,可以使用drop
参数指示不应读取哪些列:
dat <- fread("data.txt", drop = c("Jul","Aug","Sep","Oct","Nov","Dec")) dat <- fread("data.txt", drop = c(8:13))
所有结果在:
> data Year Jan Feb Mar Apr May Jun 1 2009 -41 -27 -25 -31 -31 -39 2 2010 -41 -27 -25 -31 -31 -39 3 2011 -21 -27 -2 -6 -10 -32
更新:当你不想fread
返回一个data.table ,使用data.table = FALSE
参数,例如: fread("data.txt", select = c(1:7), data.table = FALSE)
2)使用read.csv.sql
中的sqldf
:
另一种方法是使用sqldf
包中的read.csv.sql
函数:
library(sqldf) dat <- read.csv.sql("data.txt", sql = "select Year,Jan,Feb,Mar,Apr,May,Jun from file", sep = "\t")
3)使用read_*
函数:
library(readr) dat <- read_table("data.txt", col_types = cols_only(Year = 'i', Jan = 'i', Feb = 'i', Mar = 'i', Apr = 'i', May = 'i', Jun = 'i')) dat <- read_table("data.txt", col_types = list(Jul = col_skip(), Aug = col_skip(), Sep = col_skip(), Oct = col_skip(), Nov = col_skip(), Dec = col_skip())) dat <- read_table("data.txt", col_types = 'iiiiiii______')
从文档中解释了col_types
使用的字符:
每个字符代表一列:c =字符,i =整数,n =数字,d =双倍,l =逻辑,D =日期,T =日期时间,t =时间,? =猜,或_ / – 跳过列
你也可以使用JDBC来实现这一点。 我们来创建一个示例csv文件。
write.table(x=mtcars, file="mtcars.csv", sep=",", row.names=F, col.names=T) # create example csv file
从此链接下载并保存CSV JDBC驱动程序: http : //sourceforge.net/projects/csvjdbc/files/latest/download
> library(RJDBC) > path.to.jdbc.driver <- "jdbc//csvjdbc-1.0-18.jar" > drv <- JDBC("org.relique.jdbc.csv.CsvDriver", path.to.jdbc.driver) > conn <- dbConnect(drv, sprintf("jdbc:relique:csv:%s", getwd())) > head(dbGetQuery(conn, "select * from mtcars"), 3) mpg cyl disp hp drat wt qsec vs am gear carb 1 21 6 160 110 3.9 2.62 16.46 0 1 4 4 2 21 6 160 110 3.9 2.875 17.02 0 1 4 4 3 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1 > head(dbGetQuery(conn, "select mpg, gear from mtcars"), 3) MPG GEAR 1 21 4 2 21 4 3 22.8 4