为什么间接递增比直接公司更快?

这个问题已经被另一个SO成员问过了,但是被删除的令人失望。 评论说这些测量是有缺陷的,没有意义。

但是我能够用JMH下的一个小基准重现原来的问题:

package bench; import org.openjdk.jmh.annotations.*; import org.openjdk.jmh.runner.*; import org.openjdk.jmh.runner.options.*; import java.util.concurrent.*; @State(Scope.Benchmark) public class LoopInc { private int getValue() { return ThreadLocalRandom.current().nextInt(2); } @Benchmark public int directInc() { int result = 0; for (int i = 0; i < 1000; i++) { switch (getValue()) { case 0: break; case 1: result++; break; } } return result; } @Benchmark public int indirectInc() { int result = 0; for (int i = 0; i < 1000; i++) { boolean incr = false; switch (getValue()) { case 0: break; case 1: incr = true; break; } if (incr) { result++; } } return result; } public static void main(String[] args) throws RunnerException { Options options = new OptionsBuilder() .include("bench.LoopInc.*") .warmupIterations(5) .measurementIterations(10) .forks(3) .timeUnit(TimeUnit.MILLISECONDS) .build(); new Runner(options).run(); } } 

基准testing显示indirectInc工作速度提高了3倍,尽pipe“优化”并不明显。 人们会认为indirectInc应该工作得慢一些,因为它涉及一个额外的中间操作。

 Benchmark Mode Cnt Score Error Units LoopInc.directInc thrpt 30 127,301 ± 0,202 ops/ms LoopInc.indirectInc thrpt 30 378,147 ± 1,144 ops/ms 

 java version "1.8.0_51" Java(TM) SE Runtime Environment (build 1.8.0_51-b16) Java HotSpot(TM) 64-Bit Server VM (build 25.51-b03, mixed mode) 

什么原因导致JIT比directInc更好地编译indirectInc

好吧,这是你如何处理这些事情。

  1. 尝试重现它。 好吧,它重现:

     Benchmark Mode Cnt Score Error Units LoopInc.directInc thrpt 15 175.678 ± 1.118 ops/ms LoopInc.indirectInc thrpt 15 641.413 ± 9.722 ops/ms 
  2. 尝试使用-prof perfasm来查看生成的-prof perfasm 。 长话短说,它产生了很多生成的代码,所以我们可能想限制循环展开。 但是,它会影响性能,而且几乎可以成为原因。 所以,让我们用-XX:LoopUnrollLimit=1重新运行。 好的,分数比较低,但是差别还是很大的:

     Benchmark Mode Cnt Score Error Units LoopInc.directInc thrpt 15 161.147 ± 6.101 ops/ms LoopInc.indirectInc thrpt 15 489.430 ± 1.698 ops/ms 
  3. 再看看生成的代码,仍然没有出现在我们的眼前。 那么,这似乎很有趣。 让我们正确地做到这一点。 我们可以描述工作量吗? 当然,我们可以在-prof perfnorm的帮助下,对每个基准操作的硬件计数器进行归一化处理。 让我们来看看:

     Benchmark Mode Cnt Score Error Units LoopInc.directInc thrpt 15 161.875 ± 3.038 ops/ms LoopInc.directInc:·CPI thrpt 3 0.967 ± 0.196 #/op LoopInc.directInc:·L1-dcache-load-misses thrpt 3 0.394 ± 3.663 #/op LoopInc.directInc:·L1-dcache-loads thrpt 3 2149.594 ± 228.166 #/op LoopInc.directInc:·L1-dcache-store-misses thrpt 3 0.114 ± 1.001 #/op LoopInc.directInc:·L1-dcache-stores thrpt 3 1073.666 ± 96.066 #/op LoopInc.directInc:·L1-icache-load-misses thrpt 3 0.965 ± 22.984 #/op LoopInc.directInc:·LLC-loads thrpt 3 0.204 ± 2.763 #/op LoopInc.directInc:·LLC-stores thrpt 3 0.060 ± 0.633 #/op LoopInc.directInc:·branch-misses thrpt 3 536.068 ± 43.293 #/op LoopInc.directInc:·branches thrpt 3 3728.890 ± 220.539 #/op LoopInc.directInc:·cycles thrpt 3 26219.146 ± 6287.590 #/op LoopInc.directInc:·dTLB-load-misses thrpt 3 0.063 ± 0.124 #/op LoopInc.directInc:·dTLB-loads thrpt 3 2136.942 ± 165.990 #/op LoopInc.directInc:·dTLB-store-misses thrpt 3 0.022 ± 0.029 #/op LoopInc.directInc:·dTLB-stores thrpt 3 1084.787 ± 417.281 #/op LoopInc.directInc:·iTLB-load-misses thrpt 3 0.081 ± 0.333 #/op LoopInc.directInc:·iTLB-loads thrpt 3 3.623 ± 19.955 #/op LoopInc.directInc:·instructions thrpt 3 27114.052 ± 1843.720 #/op LoopInc.indirectInc thrpt 15 489.164 ± 2.692 ops/ms LoopInc.indirectInc:·CPI thrpt 3 0.281 ± 0.015 #/op LoopInc.indirectInc:·L1-dcache-load-misses thrpt 3 0.503 ± 9.071 #/op LoopInc.indirectInc:·L1-dcache-loads thrpt 3 2149.806 ± 369.040 #/op LoopInc.indirectInc:·L1-dcache-store-misses thrpt 3 0.167 ± 1.370 #/op LoopInc.indirectInc:·L1-dcache-stores thrpt 3 1073.895 ± 186.741 #/op LoopInc.indirectInc:·L1-icache-load-misses thrpt 3 0.313 ± 1.275 #/op LoopInc.indirectInc:·branch-misses thrpt 3 1.102 ± 0.375 #/op LoopInc.indirectInc:·branches thrpt 3 2143.670 ± 228.475 #/op LoopInc.indirectInc:·cycles thrpt 3 8701.665 ± 706.183 #/op LoopInc.indirectInc:·dTLB-load-misses thrpt 3 0.020 ± 0.301 #/op LoopInc.indirectInc:·dTLB-loads thrpt 3 2141.965 ± 135.852 #/op LoopInc.indirectInc:·dTLB-store-misses thrpt 3 0.002 ± 0.029 #/op LoopInc.indirectInc:·dTLB-stores thrpt 3 1070.376 ± 81.445 #/op LoopInc.indirectInc:·iTLB-load-misses thrpt 3 0.007 ± 0.135 #/op LoopInc.indirectInc:·iTLB-loads thrpt 3 0.310 ± 5.768 #/op LoopInc.indirectInc:·instructions thrpt 3 30968.207 ± 3627.540 #/op 

    哦,这两个基准都有相当数量的指令。 较慢的需要更多的周期(这就是为什么CPI在directInc也不理想;然而, indirectInc产生接近理想的CPI)。 如果仔细观察可能的原因:没有太多的caching未命中,没有太多的TLB未命中,但是速度慢的基准有很多分支未命中。 AHA! 现在我们知道在生成的代码中看什么。

  4. 让我们再看看生成的代码。 -prof perfasm方便地突出了跳跃。 然后你会看到这个…

    directInc

      ╭│ 0x00007fa0a82a50ff: jmp 0x00007fa0a82a5116 11.39% 16.90% ││ ↗ 0x00007fa0a82a5101: inc %edx ;*iinc ││ │ ; - org.openjdk.LoopInc::directInc@46 (line 18) 12.52% 23.11% ││ │↗↗ 0x00007fa0a82a5103: mov %r10,0xe8(%r11) ;*invokevirtual putLong ││ │││ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241) 12.00% 8.14% ││ │││ 0x00007fa0a82a510a: inc %r8d ;*iinc ││ │││ ; - org.openjdk.LoopInc::directInc@46 (line 18) 0.03% 0.03% ││ │││ 0x00007fa0a82a510d: cmp $0x3e8,%r8d │╰ │││ 0x00007fa0a82a5114: jge 0x00007fa0a82a50c7 ;*aload_0 │ │││ ; - org.openjdk.LoopInc::directInc@11 (line 19) 0.80% 0.91% ↘ │││ 0x00007fa0a82a5116: mov 0xf0(%r11),%r10d ;*invokevirtual getInt │││ ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222) 4.28% 1.23% │││ 0x00007fa0a82a511d: test %r10d,%r10d ╭│││ 0x00007fa0a82a5120: je 0x00007fa0a82a517b ;*ifne ││││ ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222) 2.11% 0.01% ││││ 0x00007fa0a82a5122: movabs $0x9e3779b97f4a7c15,%r10 0.01% 0.07% ││││ 0x00007fa0a82a512c: add 0xe8(%r11),%r10 ;*ladd ││││ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242) 7.73% 1.89% ││││ 0x00007fa0a82a5133: mov %r10,%r9 1.21% 1.84% ││││ 0x00007fa0a82a5136: shr $0x21,%r9 1.90% 0.03% ││││ 0x00007fa0a82a513a: xor %r10,%r9 2.02% 0.03% ││││ 0x00007fa0a82a513d: movabs $0xff51afd7ed558ccd,%rcx 0.94% 1.82% ││││ 0x00007fa0a82a5147: imul %rcx,%r9 ;*lmul ││││ ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182) 7.01% 2.40% ││││ 0x00007fa0a82a514b: mov %r9,%rcx ││││ 0x00007fa0a82a514e: shr $0x21,%rcx 1.89% 0.70% ││││ 0x00007fa0a82a5152: xor %r9,%rcx 3.11% 2.55% ││││ 0x00007fa0a82a5155: movabs $0xc4ceb9fe1a85ec53,%r9 0.99% 1.50% ││││ 0x00007fa0a82a515f: imul %r9,%rcx 7.66% 2.89% ││││ 0x00007fa0a82a5163: shr $0x20,%rcx 3.70% 1.97% ││││ 0x00007fa0a82a5167: mov %ecx,%r9d 0.11% ││││ 0x00007fa0a82a516a: and $0x1,%r9d ;*iand ││││ ; - java.util.concurrent.ThreadLocalRandom::nextInt@34 (line 356) 3.76% 11.13% ││││ 0x00007fa0a82a516e: cmp $0x1,%r9d │╰││ 0x00007fa0a82a5172: je 0x00007fa0a82a5101 10.48% 16.62% │ ││ 0x00007fa0a82a5174: test %r9d,%r9d │ ╰│ 0x00007fa0a82a5177: je 0x00007fa0a82a5103 ;*lookupswitch │ │ ; - org.openjdk.LoopInc::directInc@15 (line 19) │ ╰ 0x00007fa0a82a5179: jmp 0x00007fa0a82a5103 ;*aload_0 │ ; - org.openjdk.LoopInc::directInc@11 (line 19) ↘ 0x00007fa0a82a517b: mov $0xffffff5d,%esi 

    indirectInc

      0.01% 0.01% ↗ 0x00007f65588d8260: mov %edx,%r9d 0.01% │ 0x00007f65588d8263: nopw 0x0(%rax,%rax,1) 11.99% 11.38% │ 0x00007f65588d826c: data16 data16 xchg %ax,%ax ;*iconst_0 │ ; - org.openjdk.LoopInc::indirectInc@11 (line 34) │ 0x00007f65588d8270: mov 0xf0(%r8),%r10d ;*invokevirtual getInt │ ; - java.util.concurrent.ThreadLocalRandom::current@9 (line 222) │ 0x00007f65588d8277: test %r10d,%r10d │ 0x00007f65588d827a: je 0x00007f65588d8331 ;*ifne │ ; - java.util.concurrent.ThreadLocalRandom::current@12 (line 222) 0.01% │ 0x00007f65588d8280: movabs $0x9e3779b97f4a7c15,%r10 11.80% 11.49% │ 0x00007f65588d828a: add 0xe8(%r8),%r10 ;*ladd │ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@24 (line 242) 0.01% 0.01% │ 0x00007f65588d8291: mov %r10,0xe8(%r8) ;*invokevirtual putLong │ ; - java.util.concurrent.ThreadLocalRandom::nextSeed@27 (line 241) │ 0x00007f65588d8298: mov %r9d,%edx 0.01% 0.01% │ 0x00007f65588d829b: inc %edx 11.12% 12.40% │ 0x00007f65588d829d: mov %r10,%rcx 0.01% │ 0x00007f65588d82a0: shr $0x21,%rcx 0.03% │ 0x00007f65588d82a4: xor %r10,%rcx 0.06% 0.03% │ 0x00007f65588d82a7: movabs $0xff51afd7ed558ccd,%r10 12.38% 13.94% │ 0x00007f65588d82b1: imul %r10,%rcx ;*lmul │ ; - java.util.concurrent.ThreadLocalRandom::mix32@9 (line 182) 0.03% 0.01% │ 0x00007f65588d82b5: mov %rcx,%r10 │ 0x00007f65588d82b8: shr $0x21,%r10 0.03% │ 0x00007f65588d82bc: xor %rcx,%r10 11.43% 12.62% │ 0x00007f65588d82bf: movabs $0xc4ceb9fe1a85ec53,%rcx 0.01% │ 0x00007f65588d82c9: imul %rcx,%r10 0.34% 0.30% │ 0x00007f65588d82cd: shr $0x20,%r10 0.85% 0.76% │ 0x00007f65588d82d1: mov %r10d,%r10d 11.81% 11.51% │ 0x00007f65588d82d4: and $0x1,%r10d 2.16% 1.78% │ 0x00007f65588d82d8: cmp $0x1,%r10d 3.45% 3.00% │ 0x00007f65588d82dc: cmovne %r9d,%edx <----- HERE IT IS 17.55% 15.86% │ 0x00007f65588d82e0: inc %r11d ;*iinc │ ; - org.openjdk.LoopInc::indirectInc@56 (line 33) │ 0x00007f65588d82e3: cmp $0x3e8,%r11d ╰ 0x00007f65588d82ea: jl 0x00007f65588d8260 ;*if_icmpge ; - org.openjdk.LoopInc::indirectInc@8 (line 33) 

    注意cmovne而不是jmp – 这就是为什么我们有更多“可预测的”分支。 HotSpot剖析分支,并在分支剖面分支非常平坦时发出有条件的移动。 换句话说,通过为有条件移动的附加延迟支付一点钱,可以避免很可能的分支错误预测。 然而,在这种情况下,开关是特殊的:它有两个以上的select(0,1和“空”)。 这就是为什么,我推测, result增量没有被折叠成cmov。 (一般来说,HotSpot可能已经存储了零, result “默认”,但它吹了,哦)

  5. 为了证实这个假设,我们来做一个directCompleteInc案例,我们仍然使用switch ,但是现在覆盖了所有的情况:

     @Benchmark public int directCompleteInc() { int result = 0; for (int i = 0; i < 1000; i++) { switch (getValue()) { case 1: result++; break; default: break; } } return result; } 

    …并衡量它,这次没有任何select,像OP一样:

     Benchmark Mode Cnt Score Error Units LoopInc.directCompleteInc thrpt 5 644.414 ± 0.371 ops/ms LoopInc.directInc thrpt 5 174.974 ± 0.103 ops/ms LoopInc.indirectInc thrpt 5 644.015 ± 0.533 ops/ms 

    那里。

  6. 确认cmov使用cmov-prof perfasm 。 它确实。

  7. 喝起来。