如何在TensorFlow中添加正则化?
我发现在使用TensorFlow实现的许多可用的neural network代码中,正则化术语通常是通过手动添加额外的损失值来实现的。
我的问题是:
-
有没有一种更优雅或推荐的正规化方式比手动?
-
我也发现
get_variable
有一个参数regularizer
。 应该如何使用? 根据我的观察,如果我们通过正规化器(例如tf.contrib.layers.l2_regularizer
,将会计算一个表示正则化术语的张量,并将其添加到一个名为tf.GraphKeys.REGULARIZATOIN_LOSSES
的图集合中,该集合是否会被自动使用通过TensorFlow(例如在训练时用于优化器)?还是预计我应该自己使用该集合?
正如你在第二点所说的那样,使用regularizer
论者是推荐的方法。 你可以在get_variable
使用它,或者在variable_scope
设置一次,并让所有的variables正则化。
损失收集在图表中,您需要手动将它们添加到您的成本函数中。
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) reg_constant = 0.01 # Choose an appropriate one. loss = my_normal_loss + reg_constant * sum(reg_losses)
希望有所帮助!
现有答案的几个方面并不是很清楚,所以这是一个循序渐进的指南:
-
定义一个正规化者。 这是可以设置正则化常数的地方,例如:
regularizer = tf.contrib.layers.l2_regularizer(scale=0.1)
-
创buildvariables通过:
weights = tf.get_variable( name="weights", regularizer=regularizer, ... )
等价地,variables可以通过常规
weights = tf.Variable(...)
构造函数创build,然后是tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, weights)
。 -
定义一些
loss
项并添加正则化项:reg_variables = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) reg_term = tf.contrib.layers.apply_regularization(regularizer, reg_variables) loss += reg_term
注意:它看起来像
tf.contrib.layers.apply_regularization
是作为一个AddN
实现的,所以或多或less相当于sum(reg_variables)
。
使用contrib.learn
库的另一个选项如下,基于Tensorflow网站上的Deep MNIST教程 。 首先,假设您已经导入了相关库(例如import tensorflow.contrib.layers as layers
),您可以使用单独的方法定义一个networking:
def easier_network(x, reg): """ A network based on tf.contrib.learn, with input `x`. """ with tf.variable_scope('EasyNet'): out = layers.flatten(x) out = layers.fully_connected(out, num_outputs=200, weights_initializer = layers.xavier_initializer(uniform=True), weights_regularizer = layers.l2_regularizer(scale=reg), activation_fn = tf.nn.tanh) out = layers.fully_connected(out, num_outputs=200, weights_initializer = layers.xavier_initializer(uniform=True), weights_regularizer = layers.l2_regularizer(scale=reg), activation_fn = tf.nn.tanh) out = layers.fully_connected(out, num_outputs=10, # Because there are ten digits! weights_initializer = layers.xavier_initializer(uniform=True), weights_regularizer = layers.l2_regularizer(scale=reg), activation_fn = None) return out
那么,在一个主要的方法中,你可以使用下面的代码片段:
def main(_): mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) y_ = tf.placeholder(tf.float32, [None, 10]) # Make a network with regularization y_conv = easier_network(x, FLAGS.regu) weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'EasyNet') print("") for w in weights: shp = w.get_shape().as_list() print("- {} shape:{} size:{}".format(w.name, shp, np.prod(shp))) print("") reg_ws = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES, 'EasyNet') for w in reg_ws: shp = w.get_shape().as_list() print("- {} shape:{} size:{}".format(w.name, shp, np.prod(shp))) print("") # Make the loss function `loss_fn` with regularization. cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)) loss_fn = cross_entropy + tf.reduce_sum(reg_ws) train_step = tf.train.AdamOptimizer(1e-4).minimize(loss_fn)
为了实现这个目的,你需要按照我之前链接到的MNIST教程,导入相关的库,但学习TensorFlow是一个很好的练习,很容易看出正则化如何影响输出。 如果您将正则化作为参数,则可以看到以下内容:
- EasyNet/fully_connected/weights:0 shape:[784, 200] size:156800 - EasyNet/fully_connected/biases:0 shape:[200] size:200 - EasyNet/fully_connected_1/weights:0 shape:[200, 200] size:40000 - EasyNet/fully_connected_1/biases:0 shape:[200] size:200 - EasyNet/fully_connected_2/weights:0 shape:[200, 10] size:2000 - EasyNet/fully_connected_2/biases:0 shape:[10] size:10 - EasyNet/fully_connected/kernel/Regularizer/l2_regularizer:0 shape:[] size:1.0 - EasyNet/fully_connected_1/kernel/Regularizer/l2_regularizer:0 shape:[] size:1.0 - EasyNet/fully_connected_2/kernel/Regularizer/l2_regularizer:0 shape:[] size:1.0
注意正则化部分根据可用的项目给出三个项目。
在正则化为0,0.0001,0.01和1.0的情况下,我得到的testing精度值分别为0.9468,0.9476,0.9183和0.1135,表明高正则化术语的危险性。