在一个给定的素数之后findn个素数,而不使用任何检查素数的函数
如何编写一个程序在给定的数字之后findn个素数? 例如100之后的前10个素数,或1000之后的前25个素数。编辑:下面是我试过的。 我得到这样的输出,但我们可以做到这一点,而不使用任何素数testingfunction?
#include<stdio.h> #include<conio.h> int isprime(int); main() { int count=0,i; for(i=100;1<2;i++) { if(isprime(i)) { printf("%d\n",i); count++; if(count==5) break; } } getch(); } int isprime(int i) { int c=0,n; for(n=1;n<=i/2;n++) { if(i%n==0) c++; } if(c==1) return 1; else return 0; }
当然。 阅读有关Eratosthenes的筛子 。 不是检查素数,而是生成素数。
实施Eratosthenes的偏移筛。 这只是两个循环,一个接一个,在另一个循环内。
#include <math.h> // http://ideone.com/va7jm #include <stdlib.h> typedef unsigned char bool; // quick'n'dirty void primes (int n, int above) { double n0 = above / ( log(above) - log(log(above)) ); // ~ 11%..16% overhead int n1 = n0+n, i=0, j=0, k=0; double top = n1*(log(n1) + log(log(n1))); // overestimation int lim = sqrt(top), s2=top-above+1; bool *composit = (bool*) calloc( lim+1, sizeof(bool)); bool *range = (bool*) calloc( s2+1, sizeof(bool)); for( i=4; i<=lim; i+=2 ) composit[i]=1; // "1" marks composites for( i=above%2; i<=s2; i+=2 ) range[i]=1; for( i=3; i<=lim; i+=2 ) if( !composit[i] ) // "0" marks primes { k = 2*i; for( j=i*i; j<=lim; j+=k ) if( !composit[j] ) // 2.99s vs 3.26 for primes(10,10^9) composit[j] = 1; for( j=(k-(above-i)%k)%k; j<=s2; j+=k ) if( !range[j] ) range[j] = 1; } printf(" %d +: ",above); for( i=0; i<=s2 && n>0 ; ++i ) if( !range[i] ) // not a composite { printf(" %d", i); --n; } } int main() { // primes(10,1000); // 1000 +: 9 13 19 21 31 33 39 49 51 61 // primes(10,100000); // 100000 +: 3 19 43 49 57 69 103 109 129 151 primes(10,100000000); // 100000000 +: 7 37 39 49 73 81 123 127 193 213 // 1000000000 +: 7 9 21 33 87 93 97 103 123 181 return 0; }
还有很多改进,你可以在这里添加。
#include <stdio.h> static int primes[] = { 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97, 101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199, 211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293, 307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397, 401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499, 503,509,521,523,541,547,557,563,569,571,577,587,593,599, 601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691, 701,709,719,727,733,739,743,751,757,761,769,773,787,797, 809,811,821,823,827,829,839,853,857,859,863,877,881,883,887, 907,911,919,929,937,941,947,953,967,971,977,983,991,997, 1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097, 1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193, 1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297, 1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399, 1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499 }; int primeN = sizeof(primes)/sizeof(int); void printPrime(int n, int count){ int i; for(i=0;primes[i]<n;i++); while(count){ printf("%d\n", primes[i++]); count--; } } int main(){ printf("first 10 primes after 100\n"); printPrime(100, 10); printf("first 25 primes after 1000\n"); printPrime(1000, 25); getch(); }
例如你想find10个100后的素数。一种方式(不是一个有效的)是我们知道5个数字是偶数,而不是素数,所以其他五个数字检查他们的mod是(3,5,7,9 )如果不是全部都是0或者不是,那么它就是质数。